Legendre Polynomials and Complex Multiplication, I Legendre Polynomials and Complex Multiplication, I

نویسنده

  • Patrick Morton
چکیده

The factorization of the Legendre polynomial of degree (p− e)/4, where p is an odd prime, is studied over the finite field Fp. It is shown that this factorization encodes information about the supersingular elliptic curves in Legendre normal form which admit the endomorphism √ −2p, by proving an analogue of Deuring’s theorem on supersingular curves with multiplier √ −p. This is used to count the number of irreducible binomial quadratic factors of P(p−e)/4(x) over Fp in terms of the class number h(−2p). 1 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szegö Limits and Haar Wavelet Basis

This paper deals with Szegö type limits for multiplication operators on L(R) with respect to Haar orthonormal basis. Similar studies have been carried out by Morrison for multiplication operators Tf using Walsh System and Legendre polynomials [14]. Unlike the Walsh and Fourier basis functions, the Haar basis functions are local in nature. It is observed that Szegö type limit exist for a class o...

متن کامل

Spectral Approximation of Multiplication Operators

A linear operator on a Hilbert space may be approximated with nite matrices by choosing an orthonormal basis of the Hilbert space. For an operator that is not compact such approximations cannot converge in the norm topology on the space of operators. Multiplication operators on spaces of L2 functions are never compact; for them we consider how well the eigenvalues of the matrices approximate th...

متن کامل

Numerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials

‎This paper provides the fractional derivatives of‎ ‎the Caputo type for the sinc functions‎. ‎It allows to use efficient‎ ‎numerical method for solving fractional differential equations‎. ‎At‎ ‎first‎, ‎some properties of the sinc functions and Legendre‎ ‎polynomials required for our subsequent development are given‎. ‎Then‎ ‎we use the Legendre polynomials to approximate the fractional‎ ‎deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007